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Abstract
Deep convolutional neural networks have revo-
lutionized many machine learning and computer
vision tasks, however, some remaining key chal-
lenges limit their wider use. These challenges
include improving the network’s robustness to
perturbations of the input image and the limited
“field of view” of convolution operators. We intro-
duce the IMEXnet that addresses these challenges
by adapting semi-implicit methods for partial dif-
ferential equations. Compared to similar explicit
networks, such as residual networks, our network
is more stable, which has recently shown to re-
duce the sensitivity to small changes in the input
features and improve generalization. The addition
of an implicit step connects all pixels in each chan-
nel of the image and therefore addresses the field
of view problem while still being comparable to
standard convolutions in terms of the number of
parameters and computational complexity. We
also present a new dataset for semantic segmen-
tation and demonstrate the effectiveness of our
architecture using the NYU Depth dataset.

1. Introduction
Convolutional Neural Networks (CNN) have revolution-
ized many machine learning and vision tasks such as
image classification, segmentation, denoising and deblur-
ring (see (Bengio, 2009; LeCun et al., 2015; Goodfellow
et al., 2016; Hammernik et al., 2017; Avendi et al., 2016)
and references within).

Many different architectures have been proposed and often
tailored to specific tasks. In recent years, residual networks

*Equal contribution 1Department of Earth, Ocean and At-
mospheric Sciences, University of British Columbia, Vancouver,
Canada 2Xtract AI, Vancouver, Canada 3Department of Computer
Science, Ben Gurion University of the Negev, Be’er Sheva, Is-
rael 4Departments of Mathematics and Computer Science, Emory
University, Atlanta, GA, USA. Correspondence to: Eldad Haber
<ehaber@eoas.ubc.ca>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

(ResNets) have shown to be successful in dealing with many
different tasks (Gomez et al., 2017; He et al., 2016b;a; Li
et al., 2018). ResNets have many practical advantages (e.g.,
ease of training and possible reversibility (He, 2017; Chang
et al., 2018)) and are also supported by mathematical theory
due to their link to ordinary differential equations (Weinan,
2017; Chen et al., 2018; Haber & Ruthotto, 2017; Ma et al.,
2018; Lu et al., 2018) and, when dealing with imaging data,
partial differential equations (Ruthotto & Haber, 2018).

The connection between ResNets and differential equations
has highlighted the issue of forward stability of the network.
Roughly speaking, a network is forward stable when it does
not amplify perturbations of the input features due to, for ex-
ample, noise or adversarial attacks. The examples in (Haber
& Ruthotto, 2017; Chen et al., 2018) also suggest that sta-
ble networks train faster and generalize better. Keeping a
network stable requires attention and can be challenging to
control (Haber & Ruthotto, 2017; Ciccone et al., 2018; Ma
et al., 2018).

While it is possible to apply ResNets to many different
vision problems, one should differentiate between problems
that have a small-dimensional output and problems that have
a large-dimensional output.

In a small-dimensional output problem, the image is re-
duced in dimension to a small vector. For example, in image
classification, a small-dimensional vector in Rn represents
the likelihood of the image to be one of n different classes.
In this case, the network is being used for dimensional-
ity reduction. For these problems, the image is typically
coarsened a number of times before a prediction is made.
The coarsening of the image and the use of convolutions
allows far-away pixels to communicate, utilizing long-range
correlations in the image.

In a large-dimensional output problem, the network gener-
ates several different output images and, most commonly,
each output image has at least as many pixels as the input
image. An example of this is image segmentation, where
each output image represents the probability of each pixel
belonging to a certain class. In depth estimation, image
denoising, and image deblurring the output image has the
same dimension as the input image, and in many cases con-
tains high spatial frequencies that are absent in the original
image.
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For these problems, a straightforward extension of the
ResNet architecture may not be sufficient because it is un-
favorable to coarsen the image and remove high-frequency
spatial information. Without coarsening, one is required to
work with the original image resolution and compelled to
use very deep networks with sufficiently many convolutional
layers to model interactions between far away pixels.

This is known as the field-of-view problem and has been stud-
ied in (Luo et al., 2016) and it is also common in other image
processing techniques such as Total Variation image denois-
ing (Rudin et al., 1992) and anisotropic diffusion (Black
et al., 1998; Weickert, 1998). Current CNN architectures
are limited to either using additional convolutional layers,
coarsening, or a combination of both in order to increase
their field-of-view. While the receptive field is in general
not a problem for small-dimensional output problems such
as classification, where coarsening is already being used for
dimensionality reduction, it remains a problem for many
large-dimensional output problems. In large-dimensional
output problems, image coarsening can be done as a part
of the network; however, image interpolation is needed to
return to the original image size and provide dense out-
put. This leads to a different architecture, e.g., the U-net
(Ronneberger et al., 2015), which is more complicated than
simple ResNets, is less well-understood theoretically, and
usually requires many more parameters.

In this paper, we introduce the implicit-explicit network,
IMEXnet, and apply it to high-dimensional output problems.
Our network is based on simple but effective changes to
the popular ResNet architecture and is motivated by semi-
implicit techniques for partial differential equations. Such
techniques are used for time-dependent problems arising
in computational fluid dynamics and imaging when global
information is passed within a small number of iterations
or time steps (Kadioglu et al., 2011; Schönlieb & Bertozzi,
2011). These techniques address both the stability and the
field-of-view issues while adding a negligible number of pa-
rameters and computational complexity. We differentiate be-
tween large and small-dimensional output problems because
the proposed methods ability to accelerate the propagation
of information is most advantageous for high-dimensional
output problems.

The paper is structured as follows. In Section 2, we de-
rive the IMEXnet and explore its theoretical properties. In
Section 3, we show that our method can be implemented ef-
ficiently in existing machine learning packages and demon-
strate that it adds only a marginal cost to simple ResNets in
terms of the number of operations and required memory. In
Section 4, we conduct numerical experiments on a synthetic
dataset that is constructed to demonstrate the advantages
and limitations of the method, as well as on the NYU depth
dataset. We summarize the paper in Section 5.

2. Semi-implicit Neural Networks
We first briefly review residual neural networks (ResNets)
and outline their limitation in terms of stability and field-
of-view problem. We then derive the basic idea behind our
new implicit-explicit IMEXnet as a modification of ResNets.
Finally, we analyze the improved stability of our method
and discuss its advantages and disadvantages.

2.1. Residual Networks

Our starting point is the j-th layer of a ResNet that propa-
gates the features Yj as follows

Yj+1 = Yj + h f(Yj ,θj). (1)

Here, Yj+1 are the output features of the j-th layer, θj
are the parameters that this layer depends on, and f is a
nonlinear function. In imaging problems, the parameters θj
typically contain convolution kernels as well as scaling and
bias parameters for batch or instance normalization. Here
h > 0 is a step size that is typically set to 1. In particular,
we explore the structure proposed in (He et al., 2016a) that
has the form

f(Y,K1,K2, α, β) = K2σ(Nα,β(K1Y)). (2)

Here K1 and K2 are built using (typically 3×3) convolution
operators, Nα,β(·) is a normalization layer that depends on
the parameters α and β, and σ is a nonlinear activation
function that is applied element-wise.

It is interesting to evaluate the action of this network on
some image Y0. At every layer of this network, each pixel
communicates with a 5× 5 patch around itself. Therefore,
for high-resolution images, many layers are needed in order
to propagate information from one side of the image to the
other. This is demonstrated in the top two rows of Figure 1
where two delta functions are propagated through a multi-
layer ResNet with 20 layers and h = 1 and a ResNet with
5 layers and h = 5. Comparing the output features it is
apparent that the second (4 times less expensive) network is
unable to propagate information over large distances.

The above discussion highlights the field-of-view problem,
i.e., that many convolutional layers are needed to model
nonlocal interactions between distant pixels. For problems
such as image classification, the image is typically coars-
ened using pooling layers placed between ResNet blocks.
Pooling makes each pixel encompass a larger area and there-
fore allows information to travel larger distances in the same
number of convolution steps. Coarsening is not applicable
in tasks that require a high-dimensional output, as it leads
to the loss of important local information. In these cases,
many layers are needed in order to pass information be-
tween different parts of the image. This leads to very high
computational cost and storage.
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At this point, it is worthwhile recalling the differential equa-
tion interpretation given to ResNets proposed in (Weinan,
2017; Haber & Ruthotto, 2017). In this interpretation the
ResNet step (1) is viewed as a forward Euler discretization
of the ordinary differential equation (ODE)

Ẏ(t) = f(Y(t), θ(t)), Y(0) = Y0. (3)

Here, the features Y(t) and weights θ(t) are continuous
functions in the (artificial) time that corresponds with the
depth of the network. While it is possible to discretize
the system using the forward Euler method (resulting in
(1)), many other methods can be used. In particular, in
(Haber & Ruthotto, 2017; Chen et al., 2018) the midpoint
method was used and Runge Kutta methods were proposed.
These methods are all explicit methods, i.e., the state, Y at
time tj+1 is explicitly expressed by the states at previous
times. While such methods enjoy simplicity, they suffer
from the field of view problem and a lack of stability. Indeed,
many small steps are needed in order to integrate the ODE
for a long time. In particular, when explicit methods are
applied to partial differential equations (PDEs), many time
steps are required in order for information to travel on the
entire computational mesh. This problem is well-known and
documented in the numerical solution of PDEs, e.g. when
solving Navier-Stokes equations (Gresho & Sani, 1987), the
solution of flow in porous media (Chen et al., 2010), and in
cloth simulation for computer graphics (Baraff & Witkin,
1998). Hence, the relation of convolutional ResNets to those
PDEs described in (Ruthotto & Haber, 2018), provides an
alternative explanation for the field-of-view problem.

2.2. The Semi-Implicit Network

One way to accelerate the communication of information
across all pixels is to use implicit methods (Ascher & Pet-
zold, 1998). Such methods express the state at time Yj+1

implicitly. For example, the simplest implicit method for
ODEs is the backward Euler method where in order to ob-
tain Yj+1 we solve the nonlinear equation

Yj+1 −Yj = h f(Yj+1,θj+1). (4)

The backward Euler method is stable for any choice of h
when the eigenvalues of the Jacobian of f have no positive
real part. Therefore, it is possible to take arbitrarily large
steps in such a network while being robust to small pertur-
bations of the input images due to, for example, noise or
adversarial attacks. Unfortunately, implicit methods can be
rather expensive. In particular, the solution of the nonlinear
equation (4) is a non-trivial task that can be computationally
intensive.

Rather than using a fully implicit method, we derive a new
architecture using the computationally efficient Implicit-
Explicit method (IMEX) (Ascher et al., 1997; 1995). IMEX

is commonly used in fluid dynamics and surface forma-
tion and has applied also in the context of image denoising
(Schönlieb & Bertozzi, 2011). The key idea of the IMEX
method is to divide the right-hand side of the ODE into two
parts. The first (nonlinear) part is treated explicitly and the
second (linear) part is treated implicitly. We design the im-
plicit part so that it can be solved efficiently. In our context,
there is no natural division to an explicit and an implicit
part and therefore, we rewrite the ODE (3) by adding and
subtracting a linear invertible matrix

Ẏ(t) = f(Y(t), θ(t)) + LY(t)︸ ︷︷ ︸
explicit term

− LY(t)︸ ︷︷ ︸
implicit term

. (5)

Here, L is a matrix that we are free to choose or train. We
assume that L is symmetric positive definite matrix that is
”easy” to invert. As we show next, we can use a particular
3 × 3 convolution model for L that has these properties.
Next, we use the forward Euler method for the explicit term
and a backward Euler step for the implicit term. The forward
propagation through the new network that we call IMEXnet
then reads

Yj+1 = (I+ hL)−1(Yj + hLYj + h f(Yj ,θj)), (6)

where I denotes the identity matrix.

While the forward propagation may appear more compli-
cated than a simple ResNet step, we show below that the
computational complexity of the matrix inversion is similar
to that of convolution and we emphasize that this construc-
tion has some of the favorable properties of an implicit
method. Furthermore, we show that through an appropriate
choice of the matrix L the network is unconditionally stable.
This implies that no exploding modes will occur throughout
the network training. Also, the matrix (I+ hL)−1 is dense,
i.e., it couples all the pixels in each channel of the image
in a single step. For problems where the field-of-view is
important, such methods can be very effective.

To demonstrate this fact we refer to the third row of Figure 1.
It shows the forward propagation using the semi-implicit
IMEX method where we choose L as a group convolution
with the weights

L =
1

6

−1 −4 −1
−4 20 −4
−1 −4 −1

 , (7)

which is a discrete Laplace operator. We discuss this choice
next. Comparing the output images after only 5 time steps
to a ResNet with 20 time steps it is apparent that the IMEX
method increases the coupling between far away pixels.

2.3. Stability of the Method

We now discuss the selection of the matrix L and its impact
on the stability of the network. To ensure low computational
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Figure 1. Comparison of explicit and implicit neural networks. Top row: Forward propagation of a test image through an explicit ResNet
with 20 time steps. Second row: Explicit ResNet with only five time steps. While the forward propagation is four times faster to evaluate,
information is transmitted less effectively. Bottom row: Forward propagation through the proposed semi-implicit network.

complexity, we choose to have L as a group convolution.
Assuming, m channels, this implies that the matrix L has
the form

L =

L1

. . .
Lm

 .

In this way, the implicit step leads to m independent linear
systems (which can be parallelized) and it allows us to use
tools commonly available in most software packages. As
we show in the next section, such a matrix is stored as a 3D
tensor and can be quickly inverted.

We now analyze the IMEXnet in a simplified setting and
demonstrate that an adequate choice of L can ensure its
stability independent of the step size h. To this end, we
show how to choose α ≥ 0 such that L = αI ensures the
stability of the forward propagation for the model problem

Ẏ(t) = λY(t), Y(t) = Y0. (8)

Here, λ = −λreal + ıλimag with 0 ≤ λreal is a given com-
plex number with non-positive real part. In this case, the
norm of the solution Y(t) = exp(λt)Y0 is bounded by the
norm of Y0 for all times t.

As discussed above, the usual ResNet is equivalent to the
forward Euler method, and for the model problem (8) reads

Yj+1 = (1 + hλ)Yj .

This equation is stable (i.e., ‖Yj+1‖ ≤ ‖Yj‖) if and only if

|1 + λh| ≤ 1.

Hence, the usual ResNet may be unstable when |λ| is large
unless h is chosen small enough, which is computationally
expensive. Now, consider the semi-implicit model with
L = αI, which can be written as

Yj+1 =
1 + hλ+ hα

1 + hα
Yj ,

where a large h can be used as long as 0 ≤ α is chosen to
ensure the stability of the scheme. Indeed, since we assume

that the real part of λ is non-positive, it is always possible
to choose α such that ‖Yj+1‖ ≤ ‖Yj‖, which implies
that stability is conserved independent of h. The above
discussion can be summarized by the following theorem:

Theorem 1 Let J be a given matrix and consider the linear
dynamical system Ẏ(t) = JY(t). Assume that the eigen-
values of J have non-positive real parts, i.e., can be written
as λ = −λreal + ıλimag. Then, if we choose α such that

|λ|2

2λreal
− 1

h
≤ α, for all λ, (9)

the magnification factor between layers in the IMEX method
(6) is ∣∣∣∣1 + hλ+ hα

1 + hα

∣∣∣∣ ≤ 1, for all λ,

and the method is stable.

The proof of this theorem is straight forward by computing
the absolute value of the magnification factor. It is also
important to note that as h→ 0 we can choose α = 0 and
keep stability.

Despite its restrictive assumptions, the above theorem pro-
vides some intuition about the stability of the forward prop-
agation through the IMEXnet. Here, we choose J as the
Jacobian of the layer f in (2) with respect to the input fea-
tures. The non-positivity of the real part of the eigenvalues
can be ensured by construction (e.g., by setting K1 = −K>2
as in (Ruthotto & Haber, 2018)) and a bound on |λ| can be
obtained by imposing bound constraints on the convolu-
tion weights. A precise analysis is beyond the scope of
this work since the forward problem is nonlinear and non-
autonomous.

In our numerical experiments, we pick α to be relatively
large (in the range 1-10). We noticed that around this range
of values the method is rather insensitive to its choice.
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3. Numerical Implementation and
Computational Costs

We show in detail that our network, despite being slightly
more complex than the standard ResNet, can be imple-
mented using building blocks that exist in common machine
learning frameworks and benefit from GPU acceleration,
auto differentiation, etc. In particular, we discuss the com-
putation of the implicit step, that is solving the linear system

(I+ hL)Y = B,

where L is constructed above as group-wise convolution
and B collects the explicit terms.

To solve the system efficiently, we use the representation
of convolution in the Fourier space that states that the con-
volution between a kernel A and the features Y can be
computed as

A ∗Y = F−1((FA)� (FY)).

where F is the Fourier transform, ∗ is a convolution, and
� is the Hadamard element-wise product. Here, and in the
following, we assume periodic boundary conditions on the
image data. This implies that if we need to compute the
product of the inverse of the convolution operator defined
by A (assuming it is invertible) with a vector, we can simply
element-wise divide by the inverse Fourier transform of A,
i.e.,

A−1 ∗Y = F−1((FY)� (FA)).

where � applied element-wise division.

In our case the kernel A is associated with the matrix

I+ hL,

which is invertible, e.g., when we choose L to be positive
semi-definite. Thus, we define

L = B>B,

where B is a (trainable) group-wise convolution operator.
A simple PyTorch code to compute the step is presented in
Algorithm 1.

Using Fourier methods we need to have the convolution
kernel at the same size as the image we convolve it with.
This is done by generating an array of zeros that has the same
size of the image and inserting the entries of the convolution
into the appropriate places. The techniques is explained in
detail in (Nagy & Hansen, 2006).

Let us now discuss the memory and computational effort
involved with the method. To be more specific, we analyze
the method for a single ResNet layer with m channels, ap-
plied to an image of size s × s. Assuming that the stencil
size of the convolutions is O(1), applying such a layer to an

image requires a computational cost ofO(m2s2) operations
and a memory that is O(m2) to store the weights.

For the implicit networks, we have the usual explicit step
followed by an implicit step. The implicit step is a group
convolution is requires O(m(s log(s))2) additional oper-
ations, where the s log(s) term results from the Fourier
transform. Since log(s) is typically much smaller than n
the additional cost of the implicit step is insignificant.

The memory footprint of the implicit step is also very small.
It requires only O(m) additional coefficients. For problems
where the number of channels is larger than say, 100 this
cost represents less than 1% additional storage. Thus, the
improvement we obtain to ResNet comes with a very low
cost of both computations and memory.

4. Numerical Experiments
In this section, we conduct two numerical experiments that
demonstrate the points discussed above. In the first problem,
we experiment with semantic segmentation of a synthetic
dataset that we call the Q-tips dataset. We designed this
dataset to expose the limitations of explicit methods and
demonstrate the improvements of semi-implicit methods.
In the second example, we show the advantages of our ap-
proach on the NYU Depth Dataset V2 that contains images
of different room types together with their depth. The goal
of the training here is to predict the depth map given the
image of the room. While the two problems are different in
their output they share the need for nonlocal coupling across
large distances in order to deliver an accurate prediction.

4.1. The Q-tips Dataset

We introduce a synthetic semantic segmentation dataset in-
tended to quantify the effect of a network’s receptive field.
In this dataset, every image contains a single object com-
posed of a rectangular gray midsection with either a white
or black square at each end. We define the object classes
according to the combination of markers present, resulting
in three classes (white-white, white-black, and black-black).
The dataset is specifically designed to require a receptive
field that encompasses the entire object for accurate clas-
sification. If information from both ends of the object is
not available to a pixel in the output, then the problem is
ambiguous.

For the following experiments we generate a dataset of
1024 training examples and 64 validation examples. Each
64× 64 image consists of a single object of length, l, width,
w, and orientation, r, randomly selected from a discrete
uniform distribution, where l ∈ U{32, 60}, w ∈ U{4, 8},
and r ∈ U{−180, 180}.

In order to evaluate the effect of our proposed semi-implicit
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Algorithm 1 pyTorch implementation of the implicit convolution.

def diagImpConv(x, B,h):
n = x.shape
m = B.shape
mid1 = (m[2] - 1) // 2
mid2 = (m[3] - 1) // 2
Bp = torch.zeros(m[0],n[2], n[3],device=B.device)
Bp[:, 0:mid1 + 1, 0:mid2 + 1] = B[:, 0, mid1:, mid2:]
Bp[:, -mid1:, 0:mid2 + 1] = B[:, 0, 0:mid1, -(mid2 + 1):]
Bp[:, 0:mid1 + 1, -mid2:] = B[:, 0, -(mid1 + 1):, 0:mid2]
Bp[:, -mid1:, -mid2:] = B[:, 0, 0:mid1, 0:mid2]

xh = torch.rfft(x, 2, onesided=True)
Bh = torch.rfft(Bp, 2, onesided=True)
t = 1.0/(1.0 + h * (Bh[:, :, :, 0] ** 2 + Bh[:, :, :, 1] ** 2) )
xBh = torch.zeros(n[0], n[1], n[2], (n[3] + 2) // 2, 2,device=B.device)
for i in range(n[0]):

xBh[i, :,:, :, 0] = xh[i, :, :, :, 0]*t
xBh[i, :,:, :, 1] = xh[i, :, :, :, 1]*t

xB = torch.irfft(xBh, 2, onesided=True,signal_sizes = x.shape[2:])
return xB

NETWORK PARAMETERS IOU LOSS ACCURACY

IMEXNET 2701440 0.926 0.0982 99.56
RESNET 2691648 0.741 0.3332 98.18

Table 1. Comparison of semi-implicit IMEXnet and explicit
ResNet on the synthetic Q-tips validation set.

architecture, we train two nearly identical 12-layer IMEXnet
with weights that are randomly initialized from a uniform
distribution on the interval [0, 1). The opening layer expands
the single channel input to 64 channels, and the width is
subsequently doubled every 4 layers to result in a 224 chan-
nel output before the classifier. Neither network contains
any pooling layers, and the convolution layers are padded
such that the input and output are of the same resolution. In
order to make one of the networks purely explicit, we set
L = 0, which will prevent any implicit coupling, effectively
resulting in a ResNet. In both cases, we use stochastic gra-
dient descent to minimize the weighted cross entropy loss
for 200 epochs with a learning rate of 0.001 and a batch size
of 8. The loss is weighted according to the normalized class
frequencies calculated from the entire dataset in order to
address the class imbalance due to the background.

For comparison we present various error measurements for
both networks on the validation dataset in Table 1. Note
that the IMEX method did much better in terms of loss and
intersection over unions (IOU). The pixel accuracy counts
the background and therefore is somewhat misleading. An
example of the results on the testing set is plotted in Figure 2.

The table and images demonstrate that the ResNet cannot
label the image correctly. The centerpiece of the rod is
not continuously segmented with the end of the rod. In
particular, the center of the rod is randomly classified as

one of three object classes. Adding an implicit layer with a
negligible memory footprint and computational complexity
manages to resolve the problem, obtaining a near perfect
segmentation.

4.2. The NYU Depth Dataset

The NYU-Depth V2 dataset is a set of indoor images
recorded by both RGB and Depth cameras from the Mi-
crosoft Kinect. Four different scenes from the dataset are
plotted in Figure 3. The goal of our network is to use the
RGB images in order to predict the depth images. We use a
subset of the dataset, made of the kitchen scene in order to
train a network to achieve this task. The network contains
three ResNet blocks and three bottle-neck blocks and is
plotted in Figure 4.

The ResNet has only 506,928 parameters. For the IMEXnet
we use an identical network but add implicit layers. This
adds only roughly 27,000 more parameters for the implicit
network. We use 500 epochs to fit the data. The initial L2

misfit is 8.2. Using the ResNet architecture we are able
to decrease the misfit to 1.10 × 10−2. The small addition
of parameters for the implicit method allows us to fit the
data to 2.9× 10−3. The convergence of the two methods is
presented in Figure 5.

We found that for learning one set of images (i.e. kitchens),
it is possible to use rather few examples. For the kitchen
dataset we used only 8 training images, 2 validation image
and one test image. The results on the test image is plotted
in Figure 6. We observe that we are able to obtain good
results even when the number of images used for the training
is small. These results echo the results obtained for image
filtering using variational networks presented in (Riegler
et al., 2015).

Comparing the ResNet and the IMEXnet we see that the pre-
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Image Segmentation IMEX Predicition ResNet Predicition

Figure 2. Segmentation results on the Q-tips dataset. We present the image (first column), the ground truth segmentation (second column),
our method’s prediction (third column), and the ResNet’s prediction (last column).

Figure 3. Examples from the NYU depth dataset. Two sets of
kitchens are used together with their depth maps.

Figure 4. The ResNet used for the NYU dataset.
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Figure 5. Convergence of the training using ResNet and IMEX
methods on the NYU depth dataset.
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Figure 6. The testing image from the NYU dataset.

dictions of the IMEXnet is smoother than the one obtained
from the ResNet. This is not surprising as the implicit step
in the IMEXnet can be seen as a smoothing step. We also
note that in our numerical experiments we have found that
the implicit method is less sensitive to initialization. This
is not surprising as the implicit step adds stability. Indeed,
if we compare an explicit ResNet with an implicit one with
the same kernels, the analysis suggests that while the ex-
plicit network may be unstable, the implicit one is stable,
assuming L is chosen appropriately.

5. Summary
In this paper, we introduce the IMEXnet architecture for
computer vision tasks that is inspired by semi-implicit
IMEX methods commonly used to solve partial differen-
tial equations. Our new network extends standard ResNet
architectures by adding implicit layers that involve a group-
wise inverse convolution operator after each explicit layer.
We have discussed and exemplified that this approach can

resolve the field of view problem as well as the issue of
the forward stability of the network. This makes this type
of network suitable for problems where the dimension of
the output is similar to the dimension of the input, such
as semantic segmentation and depth estimation, and where
nonlocal interactions are needed.

We exemplify, using PyTorch, that our method can be im-
plemented efficiently using the available built-in functions.
The computational complexity and memory allocation that
is added by using the implicit step is small compared with
the complexity and memory needed by the ResNet. We
have shown that although the method has marginally larger
cost compared with ResNet, it can be much more efficient
in training as well as in validation on two simple model
problems of semantic segmentation and depth estimation
from images. Our code is available at https://github.
com/HaberGroup/SemiImplicitDNNs.

While we have explored one semi-implicit method (5), it is
important to realize that we are free to choose other mod-
els with similar properties. One attractive option is to re-
move the matrix L from the explicit part, and consider the
diffusion-reaction problem

Ẏ(t) = f(Y(t), θ(t))− LY(t). (10)

These types of equations have been used extensively to
model nonlinear phenomena such as pattern formation and
can have interesting behavior, e.g., it can lead to nonlin-
ear waves. These systems were already studied by Turing
(Turing, 1952) and have been studied extensively in (Mur-
ray, 1982; Ruuth, 1993; Witkin & Kass, 1991). A similar
treatment using an IMEX integration scheme leads to

Yj+1 = (I+ hL)−1(I+ h f(Yj ,θj)). (11)

Performing a similar analysis than the one in Section 2.3,
we see that this network has better stability properties. In
particular, we can remove the restriction on having the real
parts of the eigenvalues of J = ∇Yf

> to be positive. Since
these types of equations are used for pattern formation, this
type of network may have advantages when considering
an output which has patterns, e.g. segmentation of texture.
Detailed experimentation and evaluation of this approach is
an item of future work.

Since semi-implicit methods are essential in many fields,
we believe that this paper illustrates that they can also play
a large role in the field of machine learning using deep nets.
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